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by 
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Abstract 

Efficient facets for the additive model of DEA (Data 
Envelopment Analysis) are obtained by a new series of linear 
programming models which are used to show how rates of change of 
outputs with respect to inputs, both analytically,and compu- 
tationally, may be determined along a given efficient facet.   The 
differences between single and multiple output cases are determined 
and exemplified via a "cone direction" development. 
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Production Efficiency Tradeoffs, and Tradeoff Geometry 

Aooesslon For 

NTIS ORA&I 
DTIC TAB 
UnanQounoed 
Justifltation- 

By  
Distribution/ 

«^ □ 
D 

Availability Codes 

Dlst 

H 

Avail and/or 
Speolal 



1 

EFFICIENT FACETS AND RATES OF CHANGE: 

GEOMETRY AND  ANALYSIS OF SOME  PARETO-EFFICIENT 

EMPIRICAL   PRODUCTION   POSSIBILITY  SETS 

by 

A. Charnes 
W. W. Cooper 
Z.M. Huang 

J. J. Rousseau 

1.   Introduction 

A variety of models have now been developed within the methodology of 
Data Envelopment Analysis (DEA) for evaluating the (relative) efficiency of 
Decision Making Units (DMUs) which use multiple inputs to produce multiple 

outputs. 

Building on the engineering ratio idea of a single-Input, single-output 
efficiency measure, Charnes, Cooper and Rhodes (1978, 1981) generalized 
this notion to multiple-input, multiple-output situations and pushed forward on 
both their managerial aspects and, on the dual side of the mathematical 
programs involved, to more classical notions of Parelo efficiency or optimality. 
Subsequent extensions and elaborations in DEA include the "multiplicative" 
models of Charnes, Cooper, Seiford and Stutz (1982, 1983), the "modified 
ratio" model of Banker, Charnes and Cooper (1984), the "additive" model of 
Charnes, Cooper, Golany, Seiford and Stutz (1985), and the "extended 
additive" model of Charnes, Cooper, Rousseau and Sample (1987). These 
works provide alternative (but related) notions of efficiency with respect to 
different empirically-defined production possibility or reference sets. Section 2 
and Figure 1 summarize the construction of these different reference sets. 



The identification of these models, indeed the whole of DEA, as Charnes- 
Cooper (1961, oh. IX) tests for Pareto-efficiency of the generators of the 
empirically defined production possibility set was made by Charnes, Cooper 
and Seiford (1981) and elaborated in Charnes et al (1985). They also began 
investigation of (among other informatics and function properties) the efficient 
facets of empirical production possibility sets as a step toward determining the 
rates of change of outputs with changes in inputs or other substltutional rates 

along those facets. These rates of change have important economic and 
managerial implications in trade-off analysis and resource allocation. 

In the present paper we extend and develop in depth the insights and 
beginnings in Charnes et al (1985). Section 3 provides a theoretical basis for 
identification of the efficient facets of the empirical production possibility set that 

underlies the additive model of DEA. The efficient facets may be obtained by 
solving a new series of linear programming problems, one for each DEA 
efficient observed input-output point. Section 4 then shows analytically and 
computationally how rates of change of outputs with respect to inputs can be 

determined along a given efficient facet. These rates of change are computed 
from a linearly independent (in the inputs) subset of the facet points. They will 
be different along different facets. In the single output case we always obtain 

nonnegative rates of change, but with multiple outputs this is not guaranteed. 
The "cone direction" development in Section 5, in either the ouput space or the 

input space, show us what combinations of associated substitutions are needed 
in order to obtain nonnegative rates of change. A simple two-output, two-input, 
ten-DMU example is carried throughout the paper to Illustrate what is involved. 
Concluding remarks that are given in Section 6. 



2.   Empirical Production Possibility Sets 

Consider the (empirical) points (xj, yj), j« 1,... n, where the XJ are (mx1) 
input vectors and the yj are (sx1) output vectors. In most applications they will 

be positive or nonnegative vectors. We define the 'empirical production set', 

PE, to be the convex hull of these empirical points, that is, 

n n n 

PE = {(x, y): x = X Xj Hj, y = X Xj H- V jij > 0, X ^j = 1 }       (21) 
}-i j-1 j-1 

as shown in Figure 1 

Figure 1. 

The 'empirical production possibility set' QE of Charnes et a\ (1985) is 

defined by adding to PE all points with Inputs in PE and outputs not greater than 

some output in PE that is, 

QE = {(x, y): x = x, y ^ y for some (x, y) s PE } (2.2) 

Thus QE = PE ^ A in Figure 1, 



The Banker, Charnes and Cooper (1984) production possibility set adds 
to QE the set 

{(x.y): x^x, y = y       for some (x, y) e QE } 

is given by QE U B in Figure 1. 

The production possibility sets studied by Farrell (1957), Shephard 
(1970), and Fare and Lovell (1978) are truncated cones, given by QE UBUC in 
Figure 1. 

For efficient production we wish to maximize on outputs while minimizing 
on inputs. Thus we set 

Qk (x-y^lxi k = s + i.l = 1 m    ^(x,y)eQE 

where the yk and XJ are the kth and ith components of y and x. A Pareto-efficient 
(minimum) point for gi (x, y),..., gs+m (x. y) is a point (x*, y*) e QE such that 
there is no other point (x, y) e QE for which 

gk(x,y)^ gk(x*,y*). k = i s + m (2.3) 

with at least one strict inequality. Evidently, the Pareto-efficient points of QE are 
those of PE, hence we can restrict attention to PE. 

Charnes and Cooper (1961) showed (for general, multiple goals 
functions gk(x,y)) that (x*fy*) is Pareto-efficient if and only if (x*,y*) is an optimal 
solution to the reduced, single mathematical (goal) program 

s+m 

min X 9k(x,y) 
k.1 

gk(x,y)<:gk(x*,y*), k=1 s + m (2.4) 

(x.y)€PE 

The constraint inequalities in (2.4) for a test point (x*, y*) may be written as 

y^y*, x^x*, 



which are the envelopment constraints of DEA for an observed input vector x* 
and corresponding output vector y*. 

3. Pare*o-Efficient Facets of the Empirical Production 
Possibility Set 

As shown by the locus of points a b c d in Figure 2, the Pareto-efficient 
empirical production frontier is segmented into facets of efficient observed input- 

output points. The rates of change of outputs with respect to inputs along these 
efficient facets have important economic and managerial implicaitons for trade- 

off analysis and resource allocation. Our development in Sections 4 and 5 
shows how these rates of change (which will be different along different facets) 
can be derived from the observed input-output points that lie on the efficient 
facets. 

In this section we provide a theoretical basis for determining the efficient 
facets and a practical method for identifying the observed points on a facet. A 
small numerical example illustrates what is involved. 

Figure 2. 

-aTx + ßTy= 6 

(-a, ß) 



Let F be a facet of PE contained in the hyperplane -aT x + ß y = 9 such that 

-aT x + ßTy ^ 6 for all (x.y) € PE       (3.1) 

as shown in Figure 2. 

Theorem 3.1: Let the relative interior of F in the hyperplane -aT x + ß y = 0 

be non-empty, and let at least one other observed point be outside F. Then F is 
an efficient facet if and only if a > 0, ß > 0. 

Proof: By our assumption on F, int (PE) * 0. 

(=>): Let (x, y) be a relative interior point uf the facet F contained in 

-aT x + ß y = 0. Assume to the contrary that there exists ctj ^ 0 for some 

i (i = 1,... m) or ßr ^ 0 for some r (r = 1,..., s). 

(i)  3ai^0   for some I. 

Consider the new point (x^, y^) = (x - ^ej, y) where e; is a vector of zeros with a 
1 in the ith position. 

Then for any X, > 0 we have 

-cJx^ + ß y^ =-aTx + X,aj + ß y<-aTx + ß y = 0. 

Hence, for small X > 0 we have 

(xx- Vx) ^ PE 

and 

xx^ x,    yx= y, 

with strict inequality holding for XJ. This means that (x, y) is not efficient, which 

implies the facet F contained In -otT x + ß y = 0 is not efficient, a contradiction. 

(ii)  3ßr^0     for some r 

Consider the new point (xx, y^) = (x, y + Aer) where er is a vector of zeros with a 
1 in the rth position. Then for any X, > 0 we have 



-a1 xx+ß y^ = -v1 x+ ß y + ^-ßr^~aTx + ß y = ö- 

Hence, for small X > 0 we have 

i*h V\) e PE 

and 

*\= %      V\* y 

with strict inequality holding for yr. This means that (x, y) is not efficient, which 

implies the facet F contained in -aT x + ß y = 6 is not efficient, a contradiction 

(<=): Assume to the contrary that the facet F contained in -aT x + ß y = 6 with 

a > 0 and ß > 0 is not an efficient facet. That is, for some given relative interior 

point (x, y) of F, there exists another point {*, 9) e RE such that 

xs   ^    _ 
x ^ x  and y > y 

with at least one strict inequality holding. But this implies 

-aT x + ß y > -aT x + ß y = 0, 

which contradicts (3.1). 

Q.E.D. 
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Now suppose that the empirical "input-output" point (xo.yo ) is an efficient 
point. Consider the following linear programming problem. 

(-a3.ß3) 

(-a2, ß 2) 

(-a1, ß l) 

min 0 

-aT x0 + ßTy0 = 9 

-aTxj + ßVj^e, j = 1(... ,n (3.2) 

aT e + ßTe = 1 

a> 0,   ß> 0 

Figure 3 

(-a3 .ß3) 

(-a2
>P2)        \ 

(-alTx + ßlTy = e) 

(-al.p1)    Oyl 
y / 

^  (-a^x +ß2Ty = e) 

-""''"'X (x0, 
• 

""      (-o3Tx +ß3Ty = e) 

) 

Lemma 3.1: Let (a, ß, 6) be a feasible solution of (3.2), and let 

-(/x + ß'y-Oi with c/e + ß'e«! andot'^ O.ß'^ 0.1-1 k, be all the 

facet hyperplanes passing through the efficient point (XQ , yo) over PE u A u B 
k 

(see Figure 3). Then there exists {^j} with Xj ^ o and X ^i»■! such that 
i-1 
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(a, ß. 9) = I h (a1. ß'.Gi,) 
i-1 

|T JT 

Proof:  Let A ={(xIy): -a1 x + ß y < Gj, i = 1,..., K}.    Since (a, ß, 9) is a 

feasible solution of (3.2), the hyperplane -cxT x + ßy = 9 is a support plnae at 

(Xo . Vo ) such that 

-aT x0 + ßTy0 = 9 (33) 

and 

-aT x + ßTy < 9      for all (x, y) e A (3.4) 

^ First we show that there exist (kfi with X\>0 such that (a, ß, 9) = ^ X\ (a1, ß Gj), 
i-1 

that is, 

(-a. ß. -9) = E Xi {-a}, ß' -90, 
i-1 

Assume to the contrary that the following system (3.5) has no solution. 

(-a, ß,-9) = I Xi (-a1, ß1 -Gi). (3.5) 
i-i 

k*o, 1 = 1 K. 

By Parkas* theorem, there exist (d, y, f) such that 

-a' d + ß1 y- f 9i ^ 0, i = 1,... k ^3 5) 

and 

-<xTd + ßry-f9>0 (3 7) 

By (3.7), (d, y, f) must be a non-zero vector. 

(i)f = 0 

Consider (x, y) s (XQ, yo) + (d, y). By (3.6) we have 
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J^       JT T J'    _   4       ,        it 
-a1 x + ß y = (-a1 XQ + ß Yo) +(-al d + ß y) 

= ei + (-aiTd + ßiTY) 

< Gj    for all i 

That is, (x, y) e A. But by (3.7) we have 

-cJx + ß y = (-aTx0 + ß y0)+(-aTd + ß y) 

= e + (-<xTd + ßTY) 

>e 

This contradicts (3.4). 

(ii) f>0 

Let (x, y) = (^ j). Then by (3.5) we have 

iT iT iT iT 

-a1 x + ß y*^1 d + ß Y)/^öi     foralli. 

That is, (x, y) e A. But by (3.7) we have 

-aT x + ßTy = (-aTd + ßT y) /f > 9 

This contradicts (3.4). 

f<0 



11 

Let (x, y) = (XQ, yo) + (Xo -^. Vo - j)- Then by (3.6) we have 

-aiT x + ß' y = 2 (-aiT x0 + ß1 y0) +(-aiT d + ß' y)/ H) 

^ 2 Gj - Oj = Oj       for all I 

That is, (x, y) € A. But by (3.7) we have 

-aTx + ßTy = 2(^aTx0 + ßTy0)+(^cTd + ßTY)/(-f) 

>2e-e 

= e 

This contradicts (3.4). 

Hence there exist {ki} with Xj > 0 such that 

k 
(a, ß. 6) = £ li (a1, ß' 0i). 

i-1 

Since aT e + ß e = 1 and a'1 e + ß1 6 = 1, 1=1 k, 

we have 

■j- k -T k .T 

1=aTe + ß es^Xja1 e+X^iße 

i-1 i-1 

= XMaiTe+ /e)=2>.i 
i-1 i-1 

Q.E.D. 

Theorem 3.2: Let (a*. ß*. 0*) with a* > 0 and ß* > 0 be an optimal basic 

solution of (3.2) (e.g., using an extreme point method, such as the simplex 
method). Then -a*Tx + ß*T = 9* is a hyperplane containing one efficient facet 

passing through the efficient point (XQ, yo) of PE. 
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Proof: By Lemma 3.1 the feasible region of (3.1) is the convex hull of the 
i •T iT 

{(a1, ß, 0i)}, where -a1 x + ß y = Si, i = 1,.... k are all the hyperplanes 

containing all facets passing through (XQ, yo) ■ 

When using an exteme point method, the optimal basic solution to (3.2) must be 

one of the {(«', ß1, 60}, say a*= a1 > 0, ß* = ß1 > 0, and 6* = 0!. By 

Theorem 3.1: -a*Tx + ß*T = 9* is a hyperplane containing one efficient facet 

passing through (XQ, yo) • 

Q.E.D. 

Theorem 3.2 provides only a sufficient condition for an efficient facet. 
Since we cannot guarantee a* > 0 and ß* > 0, in practice we may use small 
numbers € > 0 and employ the following linear programming problem to derive 
the hyperplane containing one efficient facet passing through the efficient point 

(XQ. yo) of PE- 

Min 0 

-aTxo + ßTyo = e (3-8) 

-aTXj + ß yj ^ G.j = l.-.-.n 

aTe + ß e = 1 

a>ee, ß> ee. 

At an optimal solution (a*. ß*. 6*) to (3.8), all those observed (efficient) points j 

which satisfy their respective constraints as equalities also lie on the efficient 

facet contained in the hyperplane passing throught (xo, yo)- Such points, 
together with (XQ, yo). constitute a subset (but not necessarily all) of the facet 

members. Applying (3.8) to other members of the facet will generally reveal 
additional points, and there will be duplication, overlapping and "resting" of 

these various subsets from which the facet may be identified by reduction. 
Thus, by applying (3.8) to each DEA-efficient point In turn, all efficient facets and 

their member points can be identified. This procedure requires little additional 
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computational effort, since moving from one efficient opint to the next involves 
changing only the first constraint of (3.8) with everything else unchanged. 

To illustrate the above procedures consider the following two-output, two- 
input, 10-DMU example with data as given in Table 1. 

Table 1. 

DMU Outputs Inputs 
yi ya XT X2 

_ . ______     ,   _ 

2 
3 
4 
5 
6 
7 
8 
9 
10 

The Pareto-efficient points are DMUs 4, 5, 7, 8 and 10. Applying program 

(3.8) to each efficient point In turn produces the results given in Table 2. By 

reduction we see that there are two efficient facets: (DMU 5, DMU 8) and 

(DMU 4, DMU 5, DMU 7, DMU 10). The facets, for both the outputs and the 

inputs, are depicted in Figure 4. 

Table 2 

Program (3.8) DMUs Revealed as 
Applied to DMU Being in the Facet 

4 4,5 
5 4,5 
7 4,5.7,10 
8 5,8 
10                                              4,5,10 

2 1 
3 1 
2 2 
5 3 
4 4 
3 3 
6 6 
8 2 
1 6 
3 5 

9 9 
12 8 
7 12 
6 10 

10 5 
8 10 

12 10 
14 6 
12 12 
8 8 



♦ v- 

12 

11 

10 
9 

8 

7 
6 

5 
4 

3 

2 
1 

Figure 4. 

1    2 3 4   5 6  7 8 9 10 11 12 13 14 15 

output side 

♦ x. 

14 

12 
11 

10 
9 
8 
7 
6 
5 
4 
3 
2 

1   23 4 5 67 8 91011121314 

input side 
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4.   Determining Rates of Change 

We begin this section with some definitions and lemmas important in our 

subsequent development. 

Definition 4.1  Let S be an arbitrary set in Em. The affine manifold spanned 
q q 

by S is given by M (S) = {x: x= S X-^, x1 e S, Xi e E1,.Z ^ = 1, q > 1} 

Definition 4.2   Let S be an arbitrary set in Em.   The linear subspace spanned 
q 

by S is given by L (S) = {x: x= ,2 XjX1, x' e S, >.| e E1, q > 1} 

Lemma 4.1 Let S be an arbitrary set in Em. Then for any xeS we have 

M (S) = x + L (S-x) 

Figure 5 

L(S-X) 
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Definition 4.3 Let S be an arbitrary set in Em.   The convex hull of S is given 

by 

q q 

K (S) = {x: x= 2 M. x' € S, >.i > 0, 2 ^i = 1, q ^ 1} 

Lemma 4.2 Let S = {x1 xk} and Rank (x^x1 xk-x1) = p-1, and w. I. 

o. g. let x^x1 xP-x1 be linearly independent. Then 

M(xi xP) = M(xi xk) 

Proof:   Since L (xS-x1 xk-x1) = L (xS-x1 xP-x1), then by Lemma 

4.1 we have 

M (x1 xk)   = x1 + L (x2-xl xk-x1) 

= xi+L(x2-xi xP-xi) 

= M(x1,...xP) 

Q.E.D. 

-    1   p 

Lemma 4.3 Let x = i. X xl- Then x is a relative interior point of K(x1,... xk) in 
P i-1 

M(xi,...xk). 

Proof: x is a relative interior point of K(x1,... xP) relative to M(x1,... xP). Since 

M(x1,...xP)« M(x1
l...x

k)and 

K (x1,... xP) c K (x1,... xk), we have that x is a relative Interior point of 

K(x1,...xk)inM(x1, ...xk). 

Q.E.D. 
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W.I.o.g., let (x1, y1),..., (xk, yk) be all the generators of a given efficient 

facet. Let Rank (x2-x1 xk-x1) = Rank (x2-x1 xP-x1) = p-1, and let 
.   p 

x = J- X x'-   By Lemma 4.3, x Is a relative interior point of (x1,... xk). Hence, if 
P i-1 

we can determine the rates of change of the outputs with changes in the inputs at 

x, we also have them at any point of that facet. 

Let x-x1= i X (xl-x1) = X P 
P U2 

and 

y-y1=ii (yLy1) = YP p 

where 

where 

i-2 

X = (x2-x1 xP-x1) 

Y = (y2-y1 yP-y1) 

and P = ^ ^)T- 

Then 

XT{x-x1) = XTXP 

(XTX)-lXT{x-x1)= P 

y-y1=Y(XTX)-iXT(x-xi) 

= W(x-xi) 

W = Y(XTX)-1XT 
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For any r, we then have yr-yr
1 = rW (x-x1) (4.1) 

where rW denotes the rth row of W. 

Now allow a small change Ai0 in the particular input IQ , with all other input 

values unchanged. 

Let 

Xj + A: - X;1 = £ a, (x| -Xi1) 

and 

Then we have 

and 

where 

Xj-Xj1 = X ^(xj-Xj1), i^i0 

j-2 

x(Al0) = (xi1,... .xJ +Ai0 xm)T 

x(Ai) -x1=i; a^xi-x1) = X a 
j-2 

y(Ai0) -y^Iajly^y1) = Ya 
j-2 

a = ((X2 ap)T. 



Then 

and 

Now, 

a=(XTX)-i XT(x(Aio)-xi) 

y (Aio)-yi = Y(XTX)-1 XT (x (Aio)-xi) 

= W(x(Aio)-xi). 

19 

Vr (Ai0)-yr = (yr(Aio)-yr
1)-(yr-yr

1) 

xi0(
Aio)-7io Aio 

rW(x(Ain)-xi)-(yr-yr
1) 

Thus, we have 

rW(x-X1) + WriA-(yr-yr1) 

= Wrio (by (4.1)). 

^=    ,im    ^\)-7r 
dX; .o    Aio^Oxio(Äio)-xj( 

= Wrin (4.2) 
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If Rank (x^x1,..., xk - x1) < m, then for some io x + Aei0 will no longer lie 

on the facet for sufficiently small A > 0. Therefore, we need to project ei0 to the 

subspace L (x^x1 XP-X1) and then obtain the rate of change along this 

projected direction. (See Figure 5) 

Let P = X (XT X)-1 X T, so that P is a projection operator from tha space 

Em to the subspace L (x^x1,.... XP-X1) . 

Let 

d'0 = ., ^ '°,,. where eio has a 1 in the ioth position and zeros elsewhere. Then 
II Peio II 

we have 

dyr (x+pd'0) ...jn       . A '' x L__L — rWd0 r = 1 Q' i = 1 m dp p = 0-rvva .r- i.-.^sjo-. m ^ 

Note that if Rank (x2-^1 xk-x1) = m, then P is the (m x m) identity matrix. 

Continuing with our illustrative example of the previous section, recall the 

two efficient facets were (5, 8) and (4, 5, 7,10). We shall now determine the rates 

of change for these facets. 

Efficient Facet (5, 8): 

x8 - x5 =( 4 ) and y8 - y5 = ( _42 ).  Sjnce x8 - x5 ^ o it is linearly independent. 



Figure 6. 

21 

\ 
/  x5-x1 

\ 
\ 

\  / 

x3-x1 

/ 
s / 
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Thus 

X=(4)and Y = ( ^ ) and (XTX)-i = 17 

Therefore 

W = Y (XTX)-1XT= -2- v       J 17 
/  8      2 

-4   -1 

P = X (XTX)-1XT= J-   16    4 
v       y 17\  4      1 

1=_Pel_ = _2_/8\ 
'     HPeJ   fm\2J 

l|Pe2||   Vr7ll) 

The rates of change are given by 

dy, (x+pd1) 
dp 

pa0=iWd1 =^2^«0.97 

dy1 (x+pd2) 
dp n   r,= iWd2 =-^»0.97 

dy2(x+pd1) 
dp n  n=2Wd1 =--=4=—0.49 

p-0 ^272 

dy2 (x+pdz) 
dp n  n=2Wd' = --^=—0.49 p-0 ^fy 

Note that the last two rates of change are negative; we will address this situation 

in Section 5. 
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Efficient Facet (4, 5, 7, 10): 

12    x10=  8 
10 r        8 Hi6oH150)'x7= 

y4 = (35).y5=(4|.y7=(6).yio=(3)(Sothat 

x5-x4 = / _45 lx
7-x4 = f5 j,x10-x4 = [ _22 jand 

^-y4^-; j-y7-/^)^10-/^-/ 

It is easily verified that x5-x4 and x^-x4 are linearly independent. 

Hence 

Hi n'Y= i s 
and 

(XTX)-i = 
-2 

25'   75 

75' 900/ 

Therefore 

W = Y(XTX)-i XT = 6'3 
1 1 
12'5/ 

and 

P = X(XTXHXT = I2X2 
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Thus the rates of change in this facet are given by 

ax1 ~ 6 ' 3x1 ~ 3 

^2=1 ^ = 1 
3x1    2'8X2 ~ 5" 

5.   Cone Directions for Non-negative Rates of Change 

The rate of change of output yr with respect to input XJ, as given by (4.3), is 

not guaranteed to be non-negative. When negative rates of change are given by 

(4.3) we may employ the following development. 

Note first that the "projections" of the outputs of y1 yk along the 

direction h ^ 0 are given by the single outputs y1 ■ hTy1. • •.. y** = hTyk.    Now 

consider the following two DEA problems (5.1) and (5.2). They have the same 

input data, but the outputs of (5.2) are the projections (along the direction h) of the 

outputs of (5.1), and (x0, yo) is one obsen/ed point In {(x1, y1),..., (xn, yn)}. 

min -eTs+ -eTs~ 

lyiXj-s*      »y0 

-IxiXj-s*    --x0 {51) 

2^ «1 

Xj, s+s"    ^0 
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min -hTs+ -eTs" 

2 hTyi Xj - hV       = hV 

-Zx'Xj  -s- =-x0 ^52) 

2 ^ =1 

\, S+, S"       > 0 

If h > 0 then from (5.1) and (5.2) we have that (x0, y0) is efficient if and only 

if (x0, hTy0) is efficient, that is, (x0,y0) is efficient. 

Now let 

Y^if-v1 yP-y1) 

= (hT(y2-y1) hT(yP-yi) 

= hT(y2-y1 yP-y1) 

= hTY 

and 

Wh = Yh(XTX)-iXT 

= hTY(XTX)-iXT 

shTW 
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We then have 

dy (x+pd) 

dp 
psQ=Whd = hJWö\ i = 1 m (5.3) 

Thus, if in (4.3) there exist some r and i such that rWd1' < 0, we need to find 

a direction h > 0 such that 

rWd' > 0,    i = 1 m (5.4) 

Case (i): If (5.4) has at least one positive solution, then it is in the cone of 

directions which contains nonnegative rates of change on this efficient facet. 

Case (ii): (5.4) has no positive solution and Rank (x2-x1 xk-x1) < m. 

T *T • 
The hyperplane -a* x + ß  y = 0 which contains the efficient facet has been 

determined by the linear programming problem (3.8). Now set some suitable 

input vector x* such that x2-*1 xP-x1, x*-x1 are linearly independent, and 

determine the corresponding efficient output vector y* by solving 
.T «T * 

-a  x* + ß   y = 6 .   We thus have a new efficient point (x*, y*) and an extended 

efficient facet. The corresponding new X*> Y*. W* and P* are given by 

X*-(x2-x1 xP-x1.x-xi) 

r-(y2-y1 yP-y1,y*-y1) 

W =Y (XTX)-iXT 

* * *T     • *T 
P =X (XTX)-iXT 

and 
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H      P ej 
0 = —:  where e. is a vector of zeros with a 1 in the ith position. 

IIP ©ill 

Then by (4.3) we have 

dyr (x+pd') 
dp 

_ = rW d1, r = 1 s; l= 1 m      (5.5) p = 0 

If the rates of change given by (5.5) are still negative, the above procedure 

is repeated, further extending the efficient facet one point at a time. The process 

stops after at most m+ 1-p iterations. 

Case (iii): (5.4) has no positive solution and Rank (x^x1,..., xk-x1) = m. 

In this case we can determine directions in the inputs such that the rates of 

change of outputs with respect to inputs are nonnegative. 

We need to find a direction d which lies on the subspace 

L(x2-x1 xk-x1) such that 

dyr (x+pd) 
dp 

^rWd^O,        forallr=1 s. p«0 

Since d lies on L ( xS-x1 xk-x1), d has the representation 

d = Pz,      for some z e Em. 

This means we must have 

rWPz^O,      forallr»! s 



i.e., 

WPz > 0. 

Then for any direction d in the cone A given by 

28 

A = {d: d = Pz, WPz > 0} (5.6) 

we have the rate of change 

dyr (x+pd) 
dp p = 0 = rWd > 0,        for all r = 1 s. (5.7) 

i.e., 

Wds>0 (5.8) 

Recall that for the efficient facet (5, 8) of our illustrative example, the rate of 

change of the second outpuf with respect to each input was negative. To derive 

nonnegative rates of change along this facet we need to determine a direction 

h = [[Ji|>0 such that 

hTWd'^O.    1 = 1,2. 

Thus we have 

dy(x+pci1) 
dp p-0 hTWd1 

17V272 
(68 h1-34 h2) ;> 0 
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dy (x+pd2) 
n= hTWd2 = —Z=      (34 h^l 7 h2) > 0 

which imply that such a direction must be in the cone 

2 hi ^ h2. 

We conclude this section by highlighting the distinction between the 

single-output and the multiple-output cases. Charnes et al (1985) showed that if 

a Pareto-efficient empirical production function has only a single output, then it is 

an isotone function. Hence, if Rank (x2-x1 xk-x1) = m, we can always 

obtain nonnegative rates of change. If Rank (x^x1 xk-x1) < m, we can 

extend the facet by the procedure given for case (ii) above, and thus will be 

guaranteed nonnegative rates of change. In contrast, as has been shown in this 

paper, the multiple output case is considerably more complex. 

6.   Conclusion 

The present paper has extended the existing theory of Data Envelopment 

Analysis to develop what rates of change of outputs with changes in inputs can 

be determined on the Pareto-efficient facets of an empirically defined production 

possibility set. These rates of change, which will be different on different facets, 

are important for effective management of the resources (inputs) employed to 

obtain desired feasible outputs. 

The efficient facets can be obtained by solving a series of linear 

programming problems, one for each Pareto-efficient observed input-output point. 

It is shown that the rates of change can then be computed from any linearly 

independent (in the inputs) subset of the facet's points. For the single output case 

Mi 
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we always obtain nonnegative rates of change. The multiple output case is more 

complex, and nonnegativity is not guaranteed. However, the "cone direction" 

development of Section 5, in the output space or in the input space, shows in 

what directions change must go to obtain nonnegative rates of change. A simple 

example was developed and carried throughout the paper to provide a clearer 

understanding of the geometry of the empirical Pareto-efficient functions as well 

as to clarify the steps in our procedures. 
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